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Abstract

Aim: Lymph node (LN) metastasis is the most critical prognostic factor in esophageal

squamous cell carcinoma (ESCC). This study aimed to evaluate the potential of

18F-fluorodeoxyglucose positron emission tomography/computed tomography

(18F-FDG PET/CT) radiomics in predicting LN metastasis in ESCC patients.
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Methods: This retrospective study evaluated 129 ESCC patients who underwent radical

esophagectomy and LN dissection after 18F-FDG PET/CT scans. Radiomic features

were extracted from PET, CT, and combined PET+CT images, and three corresponding

predictive models were constructed. The diagnostic performance of each model was

assessed by measuring the area under the curve (AUC), accuracy, sensitivity, and

specificity. DeLong test was employed to compare the AUC, calibration curves were

used to assess model accuracy, and decision curve analysis was utilized to evaluate

clinical benefit.

Results: No significant differences were observed between the training and validation

cohorts regarding age, gender, tumor location, tumor stage (early vs. advanced), or

differentiation grade, with respect to the presence or absence of LN metastasis (all

P>0.05). Ten PET and nine CT radiomic features were selected from 1,688 extracted

features to build the predictive models. The combined PET+CT model achieved the

highest AUC, followed by the PET model and then the CT model in both training and

validation cohorts (AUC: 0.883, 0.846, 0.799 in training; 0.864, 0.839, 0.736 in

validation, respectively).

Conclusion: This study demonstrates the potential of PET/CT-based radiomics for

preoperatively predicting LN metastasis in ESCC. While CT-based radiomics shows

predictive value, PET radiomics offers superior performance. Furthermore, the

combined PET+CT model demonstrates the highest diagnostic accuracy, suggesting that

utilizing both imaging modalities together provides synergistic information. This

non-invasive approach could potentially contribute to personalized treatment strategies

and improve patient outcomes in ESCC.

Keywords: Esophageal squamous cell carcinoma, PET/CT, 18F-FDG, lymph node

metastasis, radiomics, texture feature

INTRODUCTION

Esophageal cancer (EC) is a prevalent malignancy worldwide, ranking as the eighth

most common cancer by incidence and the sixth leading cause of cancer-related death[1].

Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype

of EC, particularly in regions such as China, where it accounts for over 50% of both

incidence and mortality rates[2-5]. Approximately 90% of EC patients are diagnosed at an

advanced stage, and treatment strategies for early and advanced EC differ significantly.
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Early-stage EC, without lymph node metastasis (LNM), can be effectively managed

with endoscopic mucosal resection or submucosal dissection. However, advanced EC,

which is characterized by LNM, requires more aggressive interventions, including

lymphadenectomy, radical chemoradiotherapy, and neoadjuvant chemoradiotherapy[2,3,5].

The presence of LNM significantly impacts the five-year overall survival rate,

underscoring the importance of accurate staging[2,6-8].

The unique submucosal lymphatic drainage pattern of the esophagus, characterized by

regional, bidirectional, and skip metastases, poses challenges for accurate LNM

detection[9]. Current imaging modalities, including endoscopic ultrasound (EUS),

computed tomography (CT), magnetic resonance imaging (MRI), and positron emission

tomography (PET)/CT, exhibit limitations in their ability to reliably predict LNM[10,11].

EUS carries potential risks, including esophageal perforation and bleeding[12]. MRI,

while valuable, requires longer examination times, and image quality can be

compromised by respiration, heart rate, and peristaltic motion[13]. While PET/CT

provides metabolic information, the assessment of LNM often relies on size criteria

based on CT images, with lymph nodes measuring ≥10 mm in short axes typically

considered metastatic. However, reports suggest[14] that when the short-axis diameter of

lymph nodes is ≥10mm, the sensitivity ranges from 30% to 60%, specificity from 60%

to 80%, and accuracy from 27% to 86%. This wide variability has led to considerable

controversy regarding the diagnostic accuracy.

In recent years, radiomics has been proven capable of non-invasively predicting tumor

heterogeneity and providing more potential information preoperatively. Its potential in

predicting LNM in EC has been demonstrated in several studies using CT and MRI[15,16].

Regarding the prediction of LNM using PET images, previous research suggests that

radiomics models based on 18F-fluorodeoxyglucose (FDG) PET can predict LNM in

esophageal adenocarcinoma to a certain extent[17]. Therefore, this study developed and

validated a PET/CT radiomic model for predicting LNM in ESCC patients by extracting

the radiomic features of the tumor itself from PET/CT images.

In this study, we constructed three models: (1) a PET image-based model; (2) a

co-registered CT image-based model; and (3) a combined PET+CT image-based model.
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By comparing these three models, we aim to explore the value of radiomics derived

from ESCC PET/CT images in predicting LNM.

METHODS

Study Population and Design

This retrospective study was approved by the Institutional Review Board of our hospital

(approval number 2024010) and conducted in accordance with the Declaration of

Helsinki. Informed consent was waived due to the retrospective nature of the study. We

analyzed data from 129 patients diagnosed with ESCC who underwent radical

esophagectomy with regional lymph node dissection between January 2019 and May

2023. All patients received 18F-FDG PET/CT scans within four weeks prior to surgery.

Inclusion and Exclusion Criteria

Patients were included if they met the following criteria: (1) thoracic ESCC with a

single lesion and confirmed lymph node pathology; (2) good-quality PET/CT images

with no evidence of distant metastasis on PET; and (3) no prior radiotherapy or

chemotherapy. Patients were excluded if they had (1) incomplete clinical or pathological

data; (2) poor quality images; (3) a history of other malignancies; or (4) received

neoadjuvant radiotherapy or chemotherapy.

Data Collection and Follow-up

Clinical and pathological data were retrieved from electronic medical records and

included patient demographics (age, gender), surgical records, postoperative pathology

reports, and preoperative PET/CT images. All surgically resected specimens were

evaluated and staged according to the 8th edition of the Union for International Cancer

Control/American Joint Committee on Cancer (UICC/AJCC) tumor-node-metastasis

(TNM) classification guidelines.

Image Acquisition

All patients underwent PET/CT scans using a Philips Ingenuity TF 64 PET/CT scanner

(Ingenuity TF 64, Philips, Netherlands). Patients fasted for at least four to six hours

before intravenous administration of 18F-FDG (provided by Guangzhou Atom

High-Tech Isotope Pharmaceutical Co., Ltd. or Dongguan Andico Positron Research

and Development Co., Ltd., with a radiochemical purity >95%). Blood glucose levels
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were monitored before injection and maintained within the normal range (<150 mg/dL).

The injected dose of 18F-FDG was 3.7-5.5 MBq/kg. Scans were acquired 60 minutes

post-injection, covering the region from the vertex to the mid-thigh. CT scan parameters

were as follows: tube voltage 120 kV, tube current 200 mA, pitch 0.827, collimation 64

× 0.625 mm, rotation time 0.75 s, and reconstruction slice thickness 4 mm. PET data

were acquired in three-dimensional (3D) mode with 9-11 bed positions, each with an

acquisition time of 1.5 minutes. PET images were reconstructed using the ordered

subset expectation maximization (OSEM) algorithm, and CT images were reconstructed

using a standard algorithm.

Tumor Delineation

Tumor volumes of interest (VOIs) were manually delineated on both PET and CT

images using ITK-SNAP software (version 3.6.0, http://www.itksnap.org). A senior

radiologist with six years of experience contoured the tumor on each slice of the PET

image (threshold set at approximately 40%) and the corresponding CT image (window

width 300 HU, window level 40 HU), carefully avoiding inclusion of esophageal air or

adjacent structures. The delineations were reviewed and revised by a deputy chief

radiologist with over ten years of experience. In cases of disagreement, a chief

radiologist with over 20 years of experience was consulted to reach a consensus. The

tumor delineation process is illustrated in Figure 1.

(a) (b)

(c) (d)
Figure 1. Illustration of the tumor delineation process. (a) 3D reconstructed PET image,
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with the tumor highlighted by adjusting the optimal threshold. (b) Zoomed-in view of

the tumor region, with manual contouring performed slice-by-slice on the PET image to

generate the VOI. (c) and (d) Similar process for delineating the tumor VOI on the CT

image using the optimal window width and level.

Radiomic Feature Extraction and Selection

A total of 1,688 radiomic features were extracted from both PET and CT images using

the Pyradiomics Python package. These features included morphological, first-order,

textural, and wavelet-transformed features. Feature dimensionality reduction and

selection were performed using the minimum redundancy maximum relevance (mRMR)

and least absolute shrinkage and selection operator (LASSO) algorithms. Ten-fold

cross-validation was used to determine the optimal lambda value for the LASSO

regression model. Features with non-zero coefficients at the optimal lambda value were

selected for model construction. A radiomics score (Radscore) was calculated as the

sum of the product of each retained feature and its corresponding coefficient. The

combined PET+CT model was generated using a linear weighted combination of the

Radscore from PET and Radscore from CT.

Model Development and Validation

The cohort was randomly divided into a training set (n=91) and a validation set (n=38)

using a 7:3 ratio. Three separate radiomic models were developed using binary logistic

regression (LR) algorithms: a PET-based model, a CT-based model, and a combined

PET+CT model. The performance of each model was evaluated using the validation set.

The workflow of the radiomics analysis is presented in Figure 2.

Figure 2. Workflow of the radiomics analysis. The original PET/CT images were

https://www.scierxiv.com/
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separated into PET and CT components. Manual delineation and segmentation were

performed to generate tumor VOIs. Radiomic features, including shape, first-order

histogram, texture features, and wavelet-transformed features, were extracted from the

VOIs. Feature dimensionality reduction and selection were conducted using mRMR and

LASSO regression to identify the optimal features for model building. Finally, the

performance of the models was evaluated using statistical analysis.

Statistical Analysis

Statistical analysis was performed using SPSS 26.0 software. The Shapiro-Wilk test was

used to assess the normality of continuous variables. Normally distributed data were

presented as mean ± standard deviation (SD), and non-normally distributed data were

presented as median (interquartile range). Categorical data were analyzed using the

Fisher's exact test or chi-square test. Receiver operating characteristic (ROC) curve

analysis was used to evaluate the diagnostic performance of the prediction models. The

area under the ROC curve (AUC), accuracy, sensitivity, and specificity were calculated.

The DeLong test was used to compare the AUCs of the three models. Decision curve

analysis was used to assess the clinical utility of the models. A p-value of < 0.05 was

considered statistically significant.

RESULTS

Patient Characteristics

A total of 129 patients diagnosed with ESCC who underwent 18F-fluorodeoxyglucose

(18F-FDG) PET/CT scans followed by esophagectomy with lymph node dissection

were included in this retrospective study. Patients were randomly divided into a training

cohort (n=91) and a validation cohort (n=38). No significant differences were observed

between the two cohorts in terms of age, gender, tumor stage, tumor location (upper,

middle, or lower thoracic esophagus), or tumor differentiation grade (all P > 0.05),

suggesting comparable baseline characteristics. Detailed patient demographics and

clinical characteristics are presented in Table 1.

https://www.scierxiv.com/
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Table 1. Clinicopathological Characteristics of Patients in the Training and Validation Cohorts

Characteristics

Training Cohort Validation Cohort

Negative
(n = 42)

Positive
(n = 49)

t/χ2 P value Negative
(n = 16)

Positive
(n = 22)

t/χ2 P value

Age (y), mean ± SD 67.45 ± 7.37 65.10 ± 7.64 1.49 0.140 67.62 ± 6.17 67.45 ± 6.25 0.08 0.934

Gender, no.(%) 0.00 0.945 - 0.267

Female 14 (33.33) 16 (32.66) 6 (37.50) 4 (18.18)

Male 28 (66.67) 33 (67.35) 10 (62.50) 18 (81.82)

Pathological T stage,
no.(%) 0.13 0.715 - 0.075

T1/T2 9 (21.43) 9 (18.37) 8 (50.00) 4 (18.18)

T3/4a 33 (78.57) 40 (81.63) 8 (50.00) 18 (81.82)

Tumor location,
no.(%) - 0.732 - 0.881

Lower 3 (7.14) 5 (10.20) 1 (6.25) 2 (9.09)
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Middle 26 (61.90) 26 (53.06) 10 (62.50) 11 (50.00)

Upper 13 (30.95) 18 (36.73) 5 (31.25) 9 (40.91)

Differentiation degree,
no.(%) 0.40 0.820 - 0.097

Poorly 14 (33.33) 14 (28.57) 5 (31.25) 1 (4.55)

Moderately 22 (52.38) 26 (53.06) 7 (43.75) 14 (63.64)

Well 6 (14.29) 9 (18.37) 4 (25.00) 7 (31.82)

https://www.scierxiv.com/
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Radiomics Feature Extraction and Model Development

A total of 1,688 radiomics features were extracted from both PET and CT images,

encompassing morphological, first-order, textural, and higher-order wavelet

transformed features. Feature selection was performed using the LASSO regression

algorithm. Following dimensionality reduction, ten PET and nine CT features were

retained for model construction (Figure 3). The selected features and their

corresponding coefficients are listed in Tables 2 and 3. These features were then used

to build three distinct LR models: a PET-based model, a CT-based model, and a

combined PET+CT model. The combined model employed a linear weighting of the

Radscores derived from the individual PET and CT models, represented by the

equation: Radscore = 1.33380049 * PET + 1.01324718 * CT - 0.2671535. The

optimal cutoff values for predicting LNM were determined using Youden's index and

were calculated to be 0.657 for the CT model, 0.612 for the PET model, and 0.661 for

the combined PET+CT model.

(a) (b)
Figure 3. Feature Selection Process. (a) Binomial deviance plotted against the optimal

hyperparameter log(λ) using LASSO regression. (b) LASSO convergence coefficients

for different texture features, highlighting the ten PET features with non-zero

coefficients.
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Table 2. Selected PET Radiomics Features and Their Coefficients

PET Radiomics Feature Coefficient
wavelet_HLL_glszm_SmallAreaEmphasis -0.580
gradient_glszm_SmallAreaLowGrayLevelEmphasis -0.503
wavelet_LHH_glcm_MaximumProbability -0.419
logarithm_ngtdm_Coarseness -0.354
wavelet_HHL_glrlm_LowGrayLevelRunEmphasis -0.223
squareroot_glszm_SmallAreaEmphasis -0.203
lbp_3D_k_ngtdm_Strength -0.195
logarithm_glcm_ClusterShade 0.387
wavelet_LLH_glrlm_RunVariance 0.450
wavelet_LLH_firstorder_Mean 0.452

Table 3. Selected CT Radiomics Features and Their Coefficients

CT Radiomics Feature Coefficient
wavelet_HHL_gldm_SmallDependenceLowGrayLevelEmphasis -0.458
wavelet_HLH_ngtdm_Strength -0.084
wavelet_LHH_glszm_SmallAreaEmphasis 0.239
logarithm_firstorder_Maximum 0.253
lbp_3D_k_firstorder_Skewness 0.255
wavelet_HLH_glszm_SmallAreaLowGrayLevelEmphasis 0.259
wavelet_HLH_glcm_MaximumProbability 0.279
wavelet_LLH_glszm_LargeAreaLowGrayLevelEmphasis 0.481
wavelet_HHL_firstorder_Skewness 0.565

(a)
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(b)
Figure 4. Selected Features and Their Corresponding Coefficients in the Radiomics

Models. (a) Ten features and their coefficients incorporated in the PET radiomics

model. (b) Nine features and their coefficients incorporated in the CT radiomics

model.

Evaluation of Model Performance

The performance of the three radiomics models was evaluated using ROC curve

analysis (Figure 5). The AUC, accuracy, sensitivity, and specificity for each model are

summarized in Table 4. The DeLong test revealed no statistically significant

differences in AUC values among the three models in the validation cohort (all P >

0.05). However, in the training cohort, the PET+CT model demonstrated a

significantly higher AUC compared to the CT model (P = 0.02), while the difference

between the PET+CT and PET models was not significant (P > 0.05). Calibration

curves (Figure 6) indicated good agreement between predicted and actual probabilities

for all three models in both training and validation cohorts (P > 0.05), with the

PET+CT model exhibiting the closest adherence to the ideal calibration line. Decision

curve analysis (Figure 7) demonstrated that all three models provided clinical benefit

to patients, with the PET+CT model offering the highest net benefit. Further analysis

using net reclassification improvement (NRI) and integrated discrimination

improvement (IDI) (Table 5) confirmed the superior performance of the PET+CT

https://www.scierxiv.com/
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model, demonstrating its ability to improve risk stratification compared to the

individual PET and CT models.

(a) (b)
Figure 5. ROC Curves for the CT, PET, and Combined PET+CT Radiomics Models.

(a) Training cohort. (b) Validation cohort.

Table 4. Performance Metrics of the Three Radiomics Models in the Training and

Validation Cohorts

Model

Training Cohort（n=91） Validation Cohort (n=38)

AUC
(95%CI)

Accura
cy
(95%C
I)

Sensiti
vity
(95%C
I)

Specifi
city
(95%C
I)

AUC
(95%C
I)

Accuracy
(95%CI)

Sensiti
vity
(95%C
I)

Specifi
city
(95%C
I)

PET
0.846(0.7
65,
0.921)

0.758(0
.661,
0.834)

0.627(0
.490,
0.746)

0.925(0
.801,
0.974)

0.839(0
.703,
0.939)

0.737(0.5
80, 0.850)

0.650(0
.433,
0.819)

0.833(0
.607,
0.941)

CT
0.799(0.7
07,
0.886)

0.725(0
.626,
0.806)

0.647(0
.510,
0.764)

0.825(0
.680,
0.913)

0.736(0
.565,
0.899)

0.632(0.4
73, 0.767)

0.450(0
.258,
0.658)

0.833(0
.607,
0.941)

Combi
ned
Model

0.883(0.8
10,
0.938)

0.802(0
.709,
0.871)

0.745(0
.611,
0.844)

0.875(0
.739,
0.945)

0.864(0
.721,
0.967)

0.789(0.6
36,0.889)

0.700(0
.481,0.8
55)

0.889(0
.672,0.9
69)
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(a) (b)
Figure 6. Calibration Curves for the CT, PET, and Combined PET+CT Radiomics

Models. (a) Training cohort. (b) Validation cohort. The 45-degree line represents

perfect calibration.

(a)

(b)
Figure 7. Decision Curves for the CT, PET, and Combined PET+CT Radiomics

Models. (a) Training cohort. (b) Validation cohort.

https://www.scierxiv.com/
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Table 5. Continuous NRI and IDI for Model Performance Comparison

Model
Comparis
on

Training Cohort (n=91) Validation Cohort (n=38)

NRI (95%CI) IDI (95%CI) NRI (95%CI) IDI
(95%CI)

PET vs.
CT

-0.100[-0.325,-0.
125]

-0.062[-0.163,-0.
038]

-0.144[-0.527,-0.
239]

-0.160[-0.3
44, -0.023]

Combined
vs. PET

0.048[-0.110,-0.2
06]

0.144[0.084,-0.20
4]

0.211[0.015,
-0.407]

0.095[0.00
5, -0.184]

Combined
vs. CT

0.148[-0.024,-0.3
20]

0.206[0.130,-0.28
2]

0.356[0.018,
-0.693]

0.255[0.10
9, -0.401]

DISCUSSION

This study investigated the potential of 18F-FDG PET/CT radiomics in predicting

LNM in patients with ESCC. By delineating the 3D VOI of the esophageal tumor, we

were able to capture more comprehensive and accurate information compared to

traditional two-dimensional regions of interest (ROI). We developed and compared

three distinct models: one based solely on PET images, another on co-registered CT

images, and a final model combining features from both PET and CT. Our results

demonstrate the promising capability of 18F-FDG PET/CT radiomics in

preoperatively predicting LNM in ESCC.

Lymph node status is a critical prognostic factor in ESCC[6,7,8], directly influencing

tumor staging, surgical planning, and, ultimately, patient outcomes. Previous research

has focused mainly on CT-based radiomics for predicting LNM in ESCC. Liu et al.[18]

highlighted the utility of texture features in differentiating metastatic from

non-metastatic lymph nodes, while Ou et al.[19] and Shen et al.[20] demonstrated the

predictive capabilities of CT radiomics models. Although the combined nature of

PET/CT theoretically provides richer information than CT alone, its application in

radiomics has predominantly been confined to evaluating treatment response and

prognosis[21-25]. Therefore, this study aimed to address this gap by developing and

evaluating separate PET and CT radiomics models and, subsequently, a combined

PET/CT model, to determine the unique advantages of incorporating PET data for

LNM prediction in ESCC.

Our study identified ten optimal PET and nine optimal CT radiomics features for

model construction. The PET features included one higher-order transformed

https://www.scierxiv.com/
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first-order feature and nine texture features, while the CT features consisted of three

higher-order transformed first-order features and six texture features. This selection

aligns with previous research[26] indicating the ability of first-order statistical and

texture features to accurately differentiate benign and malignant mediastinal lymph

nodes. In our models, texture features were prominent in both PET and CT, showing

substantial weight in the weight histograms. Notably, the PET model incorporated a

greater number of these features than the CT model. Specifically, the

wavelet_HLL_glszm_SmallAreaEmphasis feature held the highest weight in the PET

model, demonstrating a negative correlation with LNM. This feature, derived from the

Gray Level Size Zone Matrix (GLSZM)[27], reflects the calculation of contiguous

voxel or pixel regions within the image. It encompasses aspects of regional

homogeneity and variation, with more homogenous matrices exhibiting a wider and

flatter distribution. As SmallAreaEmphasis measures the distribution of small-sized

regions, a higher degree of heterogeneity – and thus, a less uniform matrix – could

indicate a greater likelihood of LNM. In contrast, the

wavelet_HHL_firstorder_Skewness feature, representing the skewness of the

distribution about the mean, carried the highest weight in the CT model. This

discrepancy from Liu et al.'s[18] findings, which identified entropy as an independent

prognostic factor for LNM in ESCC, could be attributed to their use of

contrast-enhanced CT images, whereas our study used non-contrast CT images

acquired as part of the PET/CT protocol. Ou et al.[19] developed a CT-based radiomics

model to differentiate regional LNM (RLNM) from non-regional LNM (NRLNM) in

334 patients with advanced ESCC, achieving AUCs of 0.79 and 0.75 in the training

and validation cohorts, respectively. Our CT model yielded comparable AUC values

of 0.799 and 0.736. Dong et al.[28] investigated the relationship between texture

features and tumor stage using pre-treatment 18F-FDG PET images from 40 ESCC

patients, finding correlations between energy, entropy, and tumor N stage. While our

study also highlights the association between texture features and LNM, the specific

features identified may differ due to the broader scope of texture features considered

in radiomics analysis. Zhang et al.[17] constructed a model based on nine 18F-FDG

PET radiomics features, including gray-level co-occurrence matrices (GLCM) and

intensity features, to predict LNM in 190 esophageal adenocarcinoma patients,

achieving AUCs of 0.79 and 0.65 in the training and external validation cohorts,
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respectively. Our study, employing ten features – including GLCM, gray-level run

length matrices (GLRLM), GLSZM, and neighborhood gray-tone difference matrices

(NGTDM) – derived from 18F-FDG PET images of ESCC patients, achieved higher

AUC values of 0.846 and 0.839. This suggests that 18F-FDG PET-based radiomics

models may have the potential to predict LNM across various histopathological

subtypes of EC, likely due to the ability of radiomics features to capture tumor

heterogeneity relevant to metastatic processes.

In recent studies, there has been a growing focus on using PET/CT and CT imaging to

predict LNM in EC patients. Jayaprakasam et al.[29] studied the 18F-FDG PET/CT

imaging features to predict the clinical prognosis of patients with locally advanced

ESCC. They compared the AUC, accuracy, sensitivity and specificity of the CT, PET

and combined PET+CT models. All three radiomics models perform well in

predicting N stages. On this basis, our study also compared the calibration curve,

decision curve, NRI and IDI classification efficiency of the three models. We further

analyzed and compared their diagnostic efficiency and clinical benefit to increase the

reliability of the results. Lei et al.[30] extracted the imaging features of preoperative

PET/CT images of 100 patients with ESCC, and constructed the prediction models

using PET, CT, fused PET-CT images and combined PET+CT images. They found

that PET/CT imaging could accurately predict ESCC staging, and that for N staging,

models combining CT and PET radiomics features showed the best predictive

performance, with AUC values of 0.918 and 0.824 in the training and validation

cohorts, respectively. In this study, the AUC values for the training and verification

cohorts of the combined model were 0.883 and 0.864, respectively, showing

consistency with Lei et al.'s findings. However, Lei et al. concluded that single CT

imaging performed better than single PET imaging, with AUCs of 0.883 vs. 0.780 in

the training cohort and 0.769 vs. 0.760 in the validation cohort. Conversely, our study

revealed that single PET imaging outperforms single CT imaging, consistent with the

study of Jayaprakasam et al[29]. This discrepancy may be because CT images mainly

provide structural information, and have advantages in extracting morphological

features, whereas PET images reflect functional and metabolic information,

potentially revealing features directly related to disease states that may not be evident

on CT images. Therefore, it can be inferred that in imagomics analysis, PET imaging
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may extract more comprehensive and characteristic features than CT, especially

concerning functional and metabolic changes in disease. The differing results from

Lei[30] may be due to their smaller sample size of only 100, which could lead to

unstable estimates. Similarly, our study included only 129 patients. Therefore, future

studies should include larger sample sizes to enhance the reliability and validity of the

results. Furthermore, the higher AUC observed for texture features compared to

first-order features aligns with the understanding that texture features are more adept

at capturing spatial heterogeneity within the tumor microenvironment. First-order

features, which primarily reflect the distribution of pixel intensity values, lack the

spatial context needed to evaluate the intricate spatial relationships and heterogeneity

patterns within the tumor[31,32]. The combined PET+CT model consistently achieved

the highest AUC in both training and validation cohorts. This is likely due to the

integration of CT-derived features (including first-order, second-order, texture, and

wavelet features) with PET-specific metabolic parameters such as standardized uptake

value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). By

incorporating this comprehensive set of features, the combined model provides a more

holistic characterization of tumor characteristics associated with LNM, resulting in

enhanced diagnostic accuracy. This combined PET+CT model essentially reflects the

clinical application of PET/CT imaging.

This study has certain limitations that should be acknowledged. First, its retrospective,

single-center design requires further validation through prospective, multi-center

studies. Second, our analysis focused on radiomic features extracted from the primary

tumor, and future research could explore the potential of incorporating radiomic

features derived from the lymph nodes themselves. Third, PET metabolic parameters

such as SUV, MTV, and TLG were not included in the current model construction,

and future studies could investigate the potential benefits of incorporating these

parameters into the radiomics analysis. Finally, external validation is crucial to

confirm the robustness and generalizability of the developed models.

Conclusion

This study demonstrates the potential of a novel, non-invasive PET/CT-based

radiomics model for predicting LNM in ESCC. By analyzing PET and CT
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components separately, we preliminarily suggested the superior performance of

PET-derived radiomic features in capturing tumor heterogeneity and predicting LNM.

Furthermore, the integrated PET/CT model exhibited enhanced predictive accuracy

compared to the individual modalities, suggesting its potential clinical utility in

guiding preoperative staging and personalized treatment strategies for ESCC patients.

These findings warrant further investigation and validation in larger, multi-center

studies.
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